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Multicritical scaling in Baxter’s hard square lattice gas 

David A Huse 
Baker Laboratory, Cornell University, Ithaca, New York 14853, USA, and 
? Bell Laboratories, Murray Hill, New Jersey 07974. USA 

Received 15 June 1983 

Abstract. The scaling behaviour of the hard square lattice gas with diagonal interactions 
is examined on the basis of Baxter’s recent exact solution. It is demonstrated that all the 
corrections to scaling found may be accounted for in terms of a single irrelevant scaling 
field that scales simply as a length. The lattice cut-off is proposed as the source of these 
corrections, although other sources cannot be ruled out. The melting of the 
3 X 1 commensurate ordered phase in this model is examined in a more general context 
in which the line of Potts critical points found by Baxter appears to be a line of multicritical 
points on which the effective uniaxially chiral symmetry breaking field vanishes. 

1. Introduction and summary 

Baxter (1980,1981,1982) and Baxter and Pearce (1982,1983) have recently obtained 
exact expressions for the free energy, sublattice densities, correlation length and 
interfacial tensions of a hard square lattice gas with diagonal interactions. This exact 
solution contains two lines of critical points. The first separates a 3 X 1 commensurate 
ordered ‘solid’ phase from a disordered or ‘fluid’ phase and is apparently in the same 
universality class as the critical line of the three-state Potts model (e.g. Wu 1982). 
The second line of critical points in the exact solution (Baxter 1980, 1982) is actually 
the line of tricritical points at which the melting of the J2Xd2 commensurate solid 
phase crosses over from continuous (Ising-like) to first order, as was pointed out in a 
previous communication (Huse 1982) and later confirmed by further exact calculations 
(Baxter and Pearce 1983). In this paper, the scaling behaviour in the vicinity of these 
critical lines is examined. 

The hard square lattice gas model considered here has three thermodynamic 
parameters (or fields), as is discussed in more detail below. These are the activity, z ,  
and the two diagonal reduced interactions, L and M. For each finite L and M, Baxter 
(1980, 1982) has solved the model for at most one value of z. Thus the exact solution 
has been obtained only on a two-dimensional surface in the full three-dimensional 
( z ,  L, M )  space. Examining the exact solution in the context of this larger space was 
instrumental in determining that Baxter had located a line of tricritical points (Huse 
1982). A similar examination of the line of Ports critical points in this larger context 
is undertaken below. It is concluded that this line should be multicritical, being, in 
fact, the locus on the two-dimensional boundary of the 3 X 1 commensurate phase on 
which the relevant uniaxially chiral symmetry breaking field vanishes (Huse and Fisher 
1982, 1983). The remainder of the 3 X 1 phase boundary is expected to be in other 
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universality classes than that of the three-state Potts model (Huse and Fisher 1982, 
1983, Huse et a1 1983). 

The exact expressions for the free energy and sublattice densities in the vicinity of 
the Potts multicritical line are found to be consistent to all orders with scaling forms 
in which only (a) the relevant ‘thermal’ scaling field, (b) the marginal anisotropy field, 
and (c) a single irrelevant scaling field contribute. The leading scaling exponents prove 
to be precisely those conjectured for the three-state Potts model (den Nijs 1979, 
Nienhuis et a1 1980, Pearson 1980), values which were later derived analytically by 
Black and Emery (1981) and by den Nijs (1983). The non-analytic corrections to  
scaling found may all be accounted for by a single irrelevant scaling field that scales 
simply as a length squared. The spatial cut-off (the non-zero lattice constant) is 
proposed as the source of these corrections to scaling, although there are  other possible 
sources that cannot be ruled out. 

In the vicinity of the tricritical line the exact expressions for the free energy, order 
parameter, correlation length and interfacial tensions are, again, consistent to all orders 
with scaling forms in which only (a) the next-to-leading thermal scaling field, (b) the 
marginal anisotropy scaling field and (c) a single irrelevant scaling field contribute. 
For the density consistency to  all orders has not yet been established, but all the 
corrections to scaling found to twelfth order in the natural expansion variable, t’/4, 
may be accounted for by such a simple scaling form. The leading scaling exponents 
again agree precisely with the conjectured values, here due to  Burkhardt (1980) and 
Nienhuis et a1 (1980). In the case of the thermal exponents, the conjectured values 
were later derived analytically by Nienhuis (1982). All of the non-analytic corrections 
to scaling revealed by the exact solutions may be attributed to a single scaling field 
that scales, here, as a length. The lattice cut-off is again proposed as the source of 
these corrections. The leading thermal nonlinear scaling field appears to  vanish on 
the surface of exact solution, which in turn coincides with the surface of first-order 
transitions (Huse 1982). The surface of continuous (Ising-like) transitions, on the 
other hand, deviates from this ‘scaling surface’, but apparently only due to the non- 
vanishing correction-to-scaling field. The close proximity of this continuous transition 
to the surface of exact solution accounts naturally for the apparent ‘non-universality’ 
of the critical exponents found by Baxter and Pearce (1983). 

2. The mode1 

Baxter’s (1980) exactly soluble hard square model represents a gas of particles on a 
planar square lattice with on-site and nearest-neighbour exclusion (thus ’hard squares’) 
and next-nearest-neighbour interactions. It is defined on a lattice of, say, N sites, each 
of which may be either empty or occupied; these two possibilities are represented by 
a discrete occupation variable, al, for each site i, which may take on the two values 
U, = O  or at = 1. The partition function is then 

where the sum runs over all occupation configurations {a}  and the products run over 
all sites, i, all nearest-neighbour pairs of sites, ( i j ) ,  and all elementary square plaquettes, 
( i j k l ) ,  of the lattice, respectively. The lattice gas activity is z and the reduced energies 
of interaction between particles connected by SW-NE and NW-SE diagonals of the 
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elementary squares are L and M. A positive L or M represents an attractive interaction, 
while a negative L or M represents a repulsion. 

Baxter (1980, 1982) has calculated exactly the partition function per site in the 
thermodynamic limit, namely 

for activities and interactions satisfying the restriction 

z = ( 1 - e-L) ( 1 - e-"' ) / ( eL+M - eL - e"' ) 2 0. 

If, without loss of generality, we restrict our attention to L2 M, this exact solution 
manifold (3) consists of two disjoint parts: the first is defined by L 2 0 and M S 0 and 
contains Baxter's (1980) regimes I and 11, whose common boundary is the line of 
three-state Ports-like critical points; the second is given by L > 0 and 

eM > eL/(eL - 1) (4') 
and contains Baxter's (1980) regimes I11 and IV, whose common boundary is the line 
of tricritical points (Huse 1982). These two disjoint parts of Baxter's exact solution 
manifold are examined in turn below, with the scaling behaviour along the multicritical 
lines being the focus of interest. 

3. Regimes I and II; Pons critical line 

The portion of Baxter's exact solution manifold (3) with L 2 0 and M S 0 is separated 
into two regimes by a critical line located by the equation (Baxter 1980, 1982) 

z / ( l  - z = ;( 11 + 5d5),  ( 5 )  

as illustrated in figure 1. Regime I, which, overall, has weaker interactions and smaller 

0 e N  1 

Figure 1. Regimes I and I1 and the Potts critical line (bold) projected onto a plane of 
constant activity z. For all values of the diagonal interactions L and M Baxter (1980, 
1982) has solved the model for only one value of z ,  except in the hard hexagon (HH) limit 

L + 0, M + -a, where the exact solution includes all activities. For the original hard square 
(HS)  model (e.g. Gaunt and Fisher 1965), which is L = M = 0, the exact solution includes 
only the trivial case of zero activity. 
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activity than regime 11, represents a disordered or 'fluid' phase of the model; conversely, 
in regime I1 the lattice gas forms an ordered 3 X 1 commensurate 'solid' phase. Although 
the model is originally defined on a square lattice, the inequality of L and M in regimes 
I and I1 reduces the lattice symmetry to  that of a centred rectangular lattice, with 
symmetry axes along the diagonals of the original square lattice. In recognition of this 
reduced symmetry, the ground state of the 3 x 1 ordered phase of regime I1 is illustrated 
in figure 2 with the square lattice rotated 45" from its conventional orientation. 

The model defined by (1) has three parameters, namely, z ,  L and M ,  and Baxter 
(1980) has managed to solve it only on the two-dimensional manifold (3) in the full 
three-dimensional ( z ,  L, M )  space. It proves instructive to consider the exact solution 
manifold (3) in the context of this larger parameter space. A cross section for M = -L 
is illustrated in figure 3; other cross sections at constant M I L  will look qualitatively 
the same. In figure 3 it is clear that the point (marked P), with Potts-like critical 
behaviour that Baxter (1980) has located, is just one point on the boundary of the 
3 X 1 commensurate phase. Huse and Fisher (1982,1983) have argued that the melting 
transition of such a 3 X 1 phase on a rectangular substrate will not generally be in the 
three-state Potts universality class. They suggest, based in part on study of the 
analogous chiral clock model (Huse et a1 1983), that 3 x 1 melting will be in the Potts 
universality class only at a particular chemical potential (or activity) for which the 

relevant uniaxially chiral symmetry breaking field vanishes (Huse and Fisher 1982, 
1983). Thus it appears that the single point, P, on the 3 X 1 phase boundary where 
the model (with M = -L)  is exactly soluble is also a multicritical point, the remainder 
of the 3 x 1 phase boundary being in different universality classes from that of the 
three-state Potts model. In the full (2, L, M )  space Baxter (1980) has, therefore, 
located a line of Potts multicritical points on the two-dimensional boundary of the 
3 X 1 commensurate ordered phase. 

Baxter (1980, 1982) has parametrised the exact solution manifold (3) in regimes 
I and I1 by the variables U and t = -q2, which are the arguments of the elliptic theta 
functions that arise in the details of the exact solution. The critical line is at t = 0 ,  
while t is positive in regime I and negative in regime 11. The parameter U varies from 
U = -7 r /5  on the L = 0 axis to  U = 0 on the M = 0 axis. The coordinate transformation 
relating U and t to L, M and z, although complicated (equations (14.2.28-31) of 
Baxter 1982), is analytic both within regimes I and I1 and on the critical line. 



Multicritical scaling in lattice gas 

‘1 

Fluid 

i Fluid \ 

4361 

nmensurote 

0’ 1 
z 

Figure 3. Phase diagram for L = -M.  The line of exact solution is bold. The boundary 
of the 3 X 1 phase shown is schematic, except at the Potts multicritical point (PI, whose 
location is exactly known. There may be incommensurately ordered phases between the 
commensurate and fluid phases at low or high activity, away from the Potts point (e.g. 
Huse and Fisher 1982, 1983) .  

The reduced free energy per site can be written as 

f = l n  K = f a + f \ ,  (6) 

where fa and f\ are parts analytic and singular, respectively, at the critical line. From 
equation (14.6.3) of Baxter (1982) we see that the singular part of the free energy 
may be written in the simple functional form 

f\=Iq 3Y*(u,  lf1s’3), (7) 
where the functions Y r (  w, x ) ,  applying respectively to t S 0, consist of logarithms of 
elliptic theta functions and are analytic for 1x1 < 1. The fact that (7)  is an equality 
suggests that t may be the appropriate nonlinear ‘thermal’ scaling field (see, e.g., Fisher 
1974) for this system. The critical exponent for the free energy, 2 - (Y = $, is precisely 
that expected (den Nijs 1979, Wu 1982) for a critical point in the universality class 
of the three-state Potts model. If (7) is regarded as a scaling form then the parameter 
U enters as a marginal operator that changes the scaling function but not the critical 
exponents. This should not be regarded as surprising, since U depends mostly on the 
value of the ratio L / M  between the diagonal interaction strengths and so may be 
regarded as an ‘anisotropy field’. In the exact solution of the two-dimensional king 
model (e.g. McCoy and Wu 1973) the ratio of the two nearest-neighbour interaction 
strengths on a square lattice plays a similar role as a marginal operator. Spatial 
anisotropy of couplings has also been found to be marginal in F = 4 - d expansions 
(Bruce 1974). 

In order to investigate the sources of the non-analytic corrections to scaling in (7) ,  
let us consider what the scaling form for the free energy in the full ( z ,  L, M )  space 
should be. It has been argued above that the line of Potts critical points is actually 
multicritical, with the second relevant operator being uniaxially chiral symmetry 
breaking (Huse and Fisher 1982,1983). Thus we should allow for a nonlinear uniaxially 
chiral scaling field, say go, as well as possible irrelevant nonlinear scaling fields, 



4362 D A Huse 

gl,  gz,. . . . The full scaling form near the line of Potts-like multicritical points should 
then be 

(8) 

The simplest interpretation of the behaviour (7) of fs for the exact solution manifold 
(3) is that on this manifold the uniaxially chiral symmetry-breaking field, go, vanishes 
and only one irrelevant scaling field, say g, , with correction-to-scaling exponent 0, = $, 
contributes to the free energy. Further, the magnitude of this single irrelevant scaling 
field, g l ( t ,  U ) ,  must be independent of t. 

In a renormalisation group picture, the scaling form (8) would arise from a line of 
fixed points parametrised by U with the eigenvalues of the linearised renormalisation 
group along this ‘fixed line’ independent of U. The eigenvalue associated with the 
relevant ‘thermal’ scaling field, t ,  is y, =! (den Nijs 1979). Thus a correction-to-scaling 
exponent of O1 = $for the irrelevant scalingfield El would imply an associated renormali- 
sation group eigenvalue of y ,  = -y$, = -2. Thus the simplest scenario giving rise to 
the confluent singularity in (7) is an irrelevant scaling field, B1, that scales as a length 
squared and whose value is independent of the parameter t. The most likely identifica- 
tion of this irrelevant scaling field appears t o  be simply gl = a’, where a is the lattice 
spacing or  spatial cut-off. 

Of course, other terms in the full scaling function (8) could contribute to the 
confluent singularity observed on the exact solution manifold. Specifically, Nienhuis 
(1982) has predicted that there will be an irrelevant scaling field, say g2, with correction- 
to-scaling exponent O2 = $ at the three-state Potts critical point. If this scaling field 
had the value g2 = c2( u ) t  on the manifold (3) of exact solution it would appear in the 
scaling function in its scaled form as g21tl”’ = c ; ( ~ ) l t l ~ ’ ~ ,  which is also consistent with 
(7). Similarly, the singular part of the free energy should be even in the uniaxially 
chiral scaling field, go;  thus if one  had the special relation go = c,(u)t on the exact 
solution manifold, this would appear in the scaling function as an argument 
(gO/ I t l ’~)*  = c;(u)/tl2-*’0, which would beconsistent with (7) if 40 =i-O.17. The series 
estimate for this chiral crossover exponent iHuse et a1 1983) is 4” =0.19*0.06. 

Baxter (1980, 1981, 1982) has also obtained exact expressions (e.g., (14.6.7) of 
Baxter 1982) for the density and the order parameter on the manifold (3) of exact 
solution. Both are functions of t only, being independent of U. Now the  singular part 
of the density may be obtained from the singular part of the free energy via 

f ~ 5 1 f 1 s ! 3 ~ * ( g o / 1 t l ~ 0 ,  U, glltle’, . . .). 

P s  = dafs/az),,,,. (9) 

In the hard hexagon limit, L + 0, A4 + -CO, which is simply given by U = -7r/5, f 7  has 
been obtained for all z (Baxter 1980). Since ps is independent of U, we find 

p , ( t )  = z(af5/az),=-,,, = z(at/az),=-,,,(a/at)[it15/3 Y*( - r /5 ,  lt/5’3)1 

= b( t ) /  t J*’3Pf( 1 t 15’7, (10) 

b ( t )  = z(at/az),=-,,,, (11) 

where b ( t )  is the analytic function 

which is negative on the interval of interest, -1 < t < 1. The scaling function for the 
density is obtained from that for the free energy via 

(12) P * ( x )  = * 3 ( a / a x ) [ x Y * (  - 7r/5, x)]. 
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In regime I1 ( t  < 0) the system orders with the particles preferentially occupying 
one of the three sublattices of sites, as illustrated in figure 2. Let pA be the expectation 
value of the number of particles per site on the preferred (A)  sublattice and let p B  = p c  
be the corresponding densities for the other two sublattices. The exact result for the 
order parameter is (Baxter 1980, 1981, 1982) 

R = P A - P B  = 3 ~ t ~ ' / 9 Q ( - t ) Q ( - t 5 ) / ~ ~ Q z ( ~ t ~ 5 / 3 ) ,  (13) 

where the function Q(x)  is defined by 
oc 

Q(x)= n ( 1 - x " ) = 1 - x - x 2 + x ~ + x 7 + .  . .  
n = l  

If h is the sublattice symmetry breaking field conjugate to this order parameter then 
we have R = (afs/dh)h=o. The field h corresponds to a 'magnetic' field in a Potts model 
and so should scale as lt1'4/9 (Nienhuis et a1 1980, Pearson 1980). Allowing for the 
corresponding nonlinear scaling field, i, the scaling form for the free energy should 
thus be 

fs"lt15'3P*(h'/lf114/Y, U , i l / f l B 1 , .  * .). (15) 

The scaling form for the spontaneous order in regime I1 ( t  < 0) immediately follows as 

R = (a~/ah)h=ojt / ' /91i i , I (u ,  i l l t l e l , .  . .), (16) 

where the scaling function fiI1 is simply the derivative of 7- with respect to its first 
argument. Note that (a6/ah)h=o must be analytic in t for It( < 1. The exact result (13) 
may in fact be written in such a scaling form as 

R = ( a i / a h ) l t 1 1 / ' ~ ( l t 1 5 / ~ ) ,  (17) 

where, again, only the single irrelevant scaling field contributes. 
In summary of this section, the exact results (Baxter 1980, 1981, 1982) for the 

free energy, density and order parameter in regimes I and I1 can be written in the 
simple scaling forms (7), (10) and (171, respectively. All of the non-analytic corrections 
to scaling embodied in these formulae could arise from a single irrelevant scaling field 
that scales as a length squared and whose magnitude is independent of t. A likely 
candidate for this irrelevant scaling field is the lattice spaced squared. However, other 
relevant or irrelevant scaling fields might also contribute to the non-analytic corrections 
to scaling if they enter with magnitudes proportional to t. 

4. Regimes 111 and IV; tricritical line 

The portion of Baxter's exact solution manifold (3) with L > 0 and M > 0, and, hence, 
attractive interactions along both diagonals, is again separated into two regimes by 
a critical line located by equation (5). Regime IV, with generally weaker interactions 
but larger activity, z, represents an ordered 'solid' phase, while regime I11 is a manifold 
on which the ordered solid phase may coexist with a disordered 'fluid' phase (Huse 
1982). In regimes 111 and IV the ordering present is that of a 42 X 4 2  commensurate 
solid, where the particles preferentially occupy one of the two sublattices of next-nearest 
neighbour sites. 

Baxter (1980, 1982) also parametrised regimes 111 and IV by the variables U and, 
here, t = +q2.  The critical line is again given by t = 0, while t is positive in regime 111 
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and negative in regime IV. The parameter U varies from U = 0 for L / M  + 00 to U = ~ r / 5  
for M I L  + CO. The phase diagram for L = M, and, thence, for U = T /  10 on the line 
of exact solution, is shown in figure 4 (see also Huse 1982). For other values of L / M  
the phase diagram should be qualitatively the same. From figure 4 we see that regime 
I11 represents a surface of first-order transitions between fluid and solid. The line 
separating regimes I11 and IV hence is actually a line of tricritical points at which the 
fluid-to-solid phase transition changes from first order to continuous. Regime IV, 
which is simply the analytic continuation of regime I11 in ( z ,  L, M )  space, lies within 
the ordered solid phase. 

I 1 f i x  $2 I Commensurate sol id I 

-Ld 
C 1 LT 2 3 

L 

Figure 4. Phase diagram for L = M. The bold line of exact solution (regime 111) coincides 
with the first-order solid-fluid transition for L >  L,, where L, locates the tricritical point, 
marked T. The remainder of the exact solution line (broken curve) (regime IV) lies within 
the solid phase. The solid-fluid transition is continuous for L < L,; the Ising character of 
this transition has been checked only for the non-interacting case, L = 0, where the transition 
at zo= 3.796 is indicated (Gaunt and Fisher 1965, Baxter et n l  1980). 

Baxter (1980, 1982) finds that the singular part of the free energy vanishes 
identically in regime 111, while in regime IV it may be written in the simple form 

f s =  / t / 5 ’2F- (u ,  ltls’2), (18) 
where again the function F- consists of logarithms of elliptic theta functions and may 
be obtained from equations (14.6.1-3) of Baxter (1982). The variable U, which is still 
essentially the anisotropy field L/ M, again appears as a marginal scaling field which 
enters only in the free energy, but not in ‘observables’ such as the density, order 
parameter, or correlation length. For the remainder of this paper it is assumed, for 
simplicity, that 

L = M ,  U = 77/10. (19) 
The picture for other values of L /  M or U will be qualitatively the same. 

The tricritical point separating regimes I11 and IV should be in the same universality 
class as that occurring in an annealed dilute Ising model (Huse 1982). The appropriate 
tricritical scaling exponents have been conjectured by Burkhardt ( 1980) and Nienhuis 
et al (1980) and the conjectures for the thermal exponents have been confirmed 
analytically by Nienhuis (1982). The exponent 2 in (18) is consistent with t being the 
next-to-leading thermal nonlinear scaling field, which has a renormalisation group 
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eigenvalue of y ,  = $ (Nienhuis 1982). Allowing for the leading thermal nonlinear 
scaling field, g, as well as a sublattice symmetry breaking nonlinear scaling field, i, 
and using the calculated and conjectured exact exponents, the full scaling form near 
the tricritical point is expected to be 

f s -  l t l ’ ~ 2 F , ( i / l t / 7 7 ’ 3 2 ,  k / l t ~ ~ ’ ~ ,  u l t ~ ~ ’ ~ ,  . . .I, (20) 

where a again denotes the lattice constant or spatial cut-off. We will see that all of 
the exact results for regimes I11 and IV (Baxter 1980, 1981, 1982, Baxter and Pearce 
1983) can be explained in terms of such a scaling form with only the four nonlinear 
scaling fields, t, g, h’ and a, contributing and with the exact solution manifold being 

The spontaneous order at 6= 0 in the solid phase is obtained from fs by differentiat- 
ing with respect to the appropriate sublattice symmetry breaking field, h. This results 
in the scaling expression 

g=6=0.  

R = (afs/ah)h=o = ( a~ /ah ) l t / 3 ’32~*(k / l r19 ’4 ,  ulr\’ ’4,. . .I, (21) 

where ,fiT is the derivative of g* with respect to its first argument. For regime I11 
( t  > 0 and g’ = 0) Baxter and Pearce (1983) find 

R ( ~ > o )  = ( 9 1 / 2 t 3 / 3 2  00) o(t5)/ QP‘) ~ ( t ~ ’ ~ ) ,  (22) 

where Q ( x )  is as defined by (14). This is certainly consistent with (21), which, for 
the exact solution line g’ = 0, may evidently be written as the equality 

R = ( a 6 / a h ) l t ~ 3 / 3 2 ~ ~ ( / t 1 5 ~ 4 ) ) .  (23) 
If we now assume that the scaling function M + ( x )  is analytic at the origin we may 
make the identifications 

( a i / a h ) ( t )  = ~ ( t ) c ( t ~ )  (24) 

M, ( x 1 = ( 4  1 Q ( x “ )  / Q ( x )  Q ( x *) c ( x 4 )  

and 

(25) 

where C (  w )  is some analytic function on the interval -1 < w < 1 with C ( 0 )  = 1. 
For the spontaneous order in regime IV Baxter and Pearce (1983) find 

R = (g)  2 /  tl “Q( t)  Q2( t lo) /  Q( t ’) Q2( - t ’). 

M- ( x ) = ( t  ) I ’ *x  1’8 Q2( x8) / Q ( - x 4 )  Q2 ( x 4 )  c ( - x 4 ) ,  

(26) 

Comparing this with (23) and (24) we find 

(27) 
which is, at first sight, surprising, since one does not generally expect singularities in 
the scaling function. However, from figure 4 it is apparent that there is an Ising-like 
critical line very near regime IV. This critical line will be contained in the full scaling 
function, k, which, due to the Ising critical exponent p = P r  = Q (e.g. McCoy and Wu 
1973), should behave as 

I ; r - (w ,  x , .  . . ) - I w -  W J X , .  . . ) 1 1 ’ 8 A ( w , x , .  . .), (28) 

(29) 

where A is non-zero at the transition which is located at w = w,. On recalling that - 
M - ( x )  = M_(O, x, . . .) 

and assuming that A(0, x, . . .) does not vanish for x+O,  we find, by comparing (27) 
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and (28), that the location of the Ising-like transition behaves as 

for x + O .  

that the Ising-like critical line behaves as 

for  t + 0-. Since f measures distance from the tricritrical point along the exact solution 
line and g' measures deviation from the exact solution line in the ( z , L )  plane (see 
figure 4), this means that the critical line possesses a very high degree of tangency to 
regime IV of the exact solution line. In fact, the above analysis says that the deviation 
of the critical line from regime IV, which serves as the scaling axis, is not contained 
in the leading scaling function, but is due only to  the corrections to  scaling arising 
from the lattice cut-off. This explains why the order parameter exponents (and, see 
below, the correlation length exponents) are not equal in regimes I11 and IV as would 
generally be expected. 

The exact results for the densities in regimes 111 and IV are strikingly similar. 
Baxter and Pearce (1983) find that in regime IV 

PIV( t )  = D( t ) ,  (32) 

pfA{(t) = D(-t""), (33) 

pA"(t) = D(tI' '),  (34) 

D( X )  = HI ( x ) H ~  ( x4)/ P2( - x ' ) ,  

w , ( x ,  . . .) - x. (30) 

Returning to our original parametrisation via w = glt/ - ' /4 and x = ~ / t 1 " ~  we see 

gc- J t / " 2  (31) 

while in regime I11 

for  the solid and fluid phases. The function D is defined by 

(35) 
where the functions HI and P are, in turn, defined by (14.6.5f) and (14.6.5d) of 
Baxter (1982). The function D ( x )  is analytic on -1 < x < 1 and has the expansion 

(36) 
where pc = m ( 5  -v'5) is the multicritical density. (Baxter and Pearce (1983) expanded 
D ( x )  t o  order x 4  in their equations (4.30), (4.31) and (4.361, but are in error in the 
coefficient of x4. This error was brought to my attention by the following scaling 
argument.) 

The singular part of the density is obtained, via p s  = z (d f s /az ) ,  from the singular 
part of the free energy. If we assume, as above, that only those scaling fields exhibited 
in ( 2 0 )  contribute, we find 

(37) 
Since ( a f , / d t )  - ltI3/' and ( a f , / a g ' )  - /tlL/', with only lt)5'4 corrections, the terms in the 
density analytic in t through order t' must arise from the analytic part of the density, 
which is therefore 

(38) 
In regime 111, ( a f , / d t )  vanishes identically, so that the scaling form for the singular 
part of the density should be 

D ( x )  = pc- 5 P 2 [ X  + x 4 -  2- 2 X h -  x' + 2 x 1 ( ' + 4 ~ 1 1  + O ( x " ) ] ,  

P\ = z ( a t / a z ) ( a f J W  + z ( a g / a z ) ( a f s / a g ) .  

pa = pc- 5 - ' l 2 t  + O( t 4 ) .  

p s =  ~ ( a g / a z ) t ~ / ~ ~ , , ,  fl(t5'4), (39) 
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for the  solid and fluid phases. By comparing (33) and (34) we see that the scaling 
functions are related by the equation 

A,o,(x) = -A.R(-X). (40) 

The exact expressions for p are not in a form in which (39) can be shown to be 
adequate to all orders in t ,  nonetheless, t o  the order shown in (36) the singular part 
of the density of the solid phase in regime I11 may be written as 

p,=(1 -t-r2)r”45-1”(1 +2t5’4+4t5./2)+O(t13’4). (41) 

This is certainly consistent with the simple scaling form (39). Perhaps (39) can be 
verified to  all orders by someone more familiar with the properties of the elliptic 
functions H ,  and P. (Note added in proof. Baxter (private communication) has now 
done this.) 

Baxter and Pearce (1983) have also obtained the exact behaviour of the correlation 
length in regimes I11 and IV. They studied the so-called ‘true correlation length’, to, 
defined by 

(c+oal)-(c+o)(vl)-e-”50(A+B e-’”‘), (42) 

where the occupation variables v(, and vi refer to two sites 1 lattice units apart in the 
same column or  row. This correlation length is found to  be simply proportional t o  
the inverse interfacial tension in both regimes (Baxter and Pearce 1983). The correla- 
tion length should scale with the same variables as the free energy, so since v =: (e.g. 
Nienhuis 1982), we expect 

5;’ f ~ t y 2 * ( g / ~ t ~ y ’ 4 ,  altl? . .). (43) 

The exact results (Baxter and Pearce 1983) are  indeed found to  be consistent with 
such a scaling form, with, in fact, no dependence on U ,  and may be written as the equality 

5;’ = lt(’4X*(/t15!”). (44) 

where the scaling functions X ,  are again simply related to the logarithms of certain 
elliptic functions (see § §  2 and 3 of Baxter and Pearce 1983). 

For t > 0 (regime 111) the scaling function X + ( x )  does not vanish for x + 0 so one 
has to - t-5’4 . However, in regime IV, for t < 0, the scaling function X - ( x )  must again 
vanish as x + 0  in order t o  reflect the nearby k ing  critical line, as did M - ( x )  above. 
Now, the inverse correlation length vanishes linearly at the Ising transition (e.g. McCoy 
and Wu 1973) so we have 

(45) 2 - ( w , x , .  . . ) - I w - w c ( x , .  . . ) I  
or  X - ( x )  - x ,  assuming, as before, that w,(x, . . .) - x (equation (30)). Thus we obtain 

(46) to - ~ 5 ;  2 

for  t +  0- in regime IV, in agreement with the exact results (Baxter and Pearce 1983). 
As a final point, it seems noteworthy that all the corrections to  scaling near the 

Potts-like critical line may be attributed to  the lattice cut-off squared, while near the 
tricritical line there a re  corrections that, by the above arguments, a re  found to  be 
linear in the lattice cut-off. Corrections scaling as the cut-off squared a re  not surprising; 
for example, when a d4 model on a lattice is mapped onto a continuum 44 model, a 
term in the Hamiltonian proportional to a2(V’4)2 is found that will certainly give such 
corrections for dimensionalities d > 4. Corrections linear in the lattice cut-off a re  not 
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so easily explained. However, there is one other exactly soluble model in which they 
appear to occur, namely the eight-vertex model (e.g. Baxter 1982). The exact result 
for the magnetisation of the eight-vertex model (Baxter 1982) may be written as 

M = d ' i f P Q ( t " ) / / Q ( - t " ) ,  (47) 
where t, as in the hard square models, appears to be the nonlinear scaling field for 
this problem and is related to the couplings via elliptic functions (Baxter 1982). The 
correlation length exponent, I/, and the order parameter exponent, /I, are related by 

Y = 8 p  (48) 

and vary continuously along the critical line of this model. If the non-analytic correc- 
tions to scaling in (47) are all attributed to the lattice cut-off, then the leading corrections 
are clearly linear in the cut-off. Since the Ising model is just a special case (namely, 
Y = 1) of the eight-vertex model, this seems to contradict the suggestion of Aharony 
and Fisher (1980) that corrections linear in the cut-off do not occur for the planar 
Ising models. 
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